.

Διαφήμιση

 

 

 

User login

Σαν φόρο τιμής στο Nash (ποιοι είμαστε?) ας κάνουμε μια αναφορά στο Game Theory

Το Σάββατο πέθανε ο Nash.Είχα τη τύχη στο διδακτορικό να έχω advisor το Rudolph

(oμολογίες  homology-συνομολογιες cohomology) που είχε advisor το  Nash στο  Princeton.

Η  θεωρία των παιγνίων  είτε interactive decision theory  είναι η φυσική εξέλιξη της decision theory. Οι von Neumann , Morgenstern   του Princeton το 1946 έγραψαν το Game theory and Economic Behavior.  Δεν θα ηταν αδικο να θεωρησουμε το Princeton σαν η κοιτίδα της θεωρίας των παιγνίων.  Το βασικό αξίωμα που διέπει τη θεωρία των παιγνίων είναι το self-interest  και όχι όπως λανθασμένα δήλωσε ο Βαρουφακις  το altruism. Τα παίγνια χωρίζονται σε cooperative (συνεργάσιμο) και noncooperative (μησυνεργασιμο).  Για να είναι ένα παιχνίδι. συνεργασιμο πριν παιχτεί πρέπει να υπογράφουν δεσμευτικά συμβόλαια. (Binding agreements). Ο αριθμός των παιχτών είναι μεγαλύτερος από δυο. Εάν ο αριθμός είναι δυο τότε έχουμε μησυνεργασιμο παιχνίδι. Εάν ο αριθμός των παιχτών είναι ένας τότε έχουμε decision theory.Τα μη συνεργάσιμα απεικονίζονται  με στρατηγικές μεθόδους η με δέντρα. Όταν τα απεικονίζουμε στρατηγικά τότε η βασική προϋπόθεση είναι ότι και οι δυο παίχτες εχουν   «κοινή γνώση», ιδέα που τη πήρε ο Γενακοπουλος του Yale από το φιλόσοφο Lewis. Η λύση  του στρατηγικού παιγνιδιού  δόθηκε από τον Nash του Princeton στην  Econometrica το 1953.Η σειρα αυτων των αρθρων  ηταν η μεγαλυτερη καινοτομια  του 20ου αιωνα. Σε  αξιόλογα πανεπιστήμια αυτή η ιδέα άρχισε να χρησιμοποιείται από το 1960 σε  ανθρωπολογία , βιολογία  (Rapoport  Michigan ο πατέρας της μαθηματικής βιολογίας) Κίσινγκερ (πολιτικές επιστήμες Harvard) ακόμα και σε νομικές σχολές. Για να λυθούν τα «δέντρα» πρέπει να χρησιμοποιήσουμε το αξίωμα του  Zermelo, δηλαδή όταν υπάρχει μια Καρτεσιανή σχέση Α xΒ μας δίνει ένα C. Όσο και εάν φαίνεται εύκολο ΚΑΝΕΝΑΣ μέχρι τώρα δεν το απόδειξε. Τώρα ένα «δέντρο μπορεί να είναι  complete or incomplete information. Complete είναι όταν ξέρουμε τους rules and payoffs του παιγνίου. Το  incomplete information.είναι δύσκολο να λυθεί. Ο  Harsanyi  του Berkeley το έλυσε χρησιμοποιώντας Bayesian μεθόδους και πήρε το  Nobel.. Τα  complete  information.  χωρίζονται σε  perfect and imperfect information games. Backward induction μια μορφή του dynamic programming σε συνδυασμό με την ιδέα του  Subgame Perfect Equilibrium που επινόησε ο Selten του πανεπιστήμιου της Bonn μας δίνουν τις λύσεις. Το information είναι πολύ σημαντικό, δείτε το βιβλίο   «Information Rules» του Varian (Michigan) του  πιο διάσημου mathematical economist της γενιάς του. Παράδειγμα: Στην αρχαία Ελλάδα υπήρχε η γνωμάτευση ότι ΟΛΟΙ οι ΚΡΗΤΙΚΟΙ είναι Ψεύτες. Ένας Κρητικός εμφανίζεται στην αρχαία Αθήνα και λέει : «Είμαι κρητικός ΑΡΑ ΨΕΥΤΗΣ». Τέτοιου είδους  παράδοξα για την πληροφόρηση προσπαθούν να αντιμετωπισθούν από τη θεωρία παιγνίων διάμεσου  των θεωρητικών των computer science.

 Τώρα  ας αναφερθούμε στα συνεργάσιμα παιχνίδια. Αυτά είναι πολύ δύσκολο να λυθούν γιατί μέσα του κρύβουν συμμαχίες ακόμα και «φακελάκια» -Side payments ώστε να διασπάσουν η να δημιουργήσουν συμμαχίες. Μερικές  λύσεις είναι ο πυρήνας (core) bargaining set , stable set, nucleolus, kernel ,  Shapely value. Όλες οι λύσεις των συνεργάσιμων παιγνίων χωρίζονται σε δυο κατηγόριες.. Τα  Transferable Utility  και τα Non transferable utility. Το μεγάλο  αναπάντητο ερώτημα είναι «γιατί ο πλούσιος παίρνει ταξί όταν βρέχει και ο φτωχός όχι». Αυτό είναι ένα από τα μεγάλα ερωτήματα  που βασανίζουν το σοσιαλισμό. Η ύπαρξη του «κοινού Αγαθού.»

Το να κάνουμε ιδίως συνεργάσιμη θεωρία παιγνίων χρειαζόμαστε μαθηματικά που στα Ελληνικά πανεπιστήμια δεν διδάσκονται ούτε στα μεταπτυχιακά. Στην ουσία τα μαθηματικά που χρειαζόμαστε είναι να γράφουμε και να  αποδεικνύουμε με μαθηματικά την κοινή γλώσσα. Π.χ. Ο Ρωμαίος και η Ιουλιετα είναι ΑΛΗΘΙΝΟΙ εραστές και ζουν στην Ιταλία. Ο κάθε Ιταλός αγαπάει τα μακαρόνια. ΠΩΣ θα μοιραστούν ένα πιάτο μακαρόνια? ΘΕΩΡΗΜΑ Εάν είναι ΑΛΗΘΙΝΟΙ εραστές ΘΑ ΜΙΣΟΥΝ τα μακαρόνια. ΑΠΟΔΕΙΞΗ??????????

Τα μαθηματικά που χρειάζονται είναι: Correspondences (point to set Mapping) algebraic topology για να χτίσουμε Grasmannian manifolds, algebraic geometry, Lebesque measure theory homotopy, cohomology, Homology (counts for uncertainty) Stochastic mathematics (αυτά που κάνει ο Τάκης Καραβολιας), Knots, convex sets.

Που παει η θεωρια των Παιγνιων? Πάει εκεί που ΟΝΕΙΡΕΥΕΤΑΙ ο  Binmore  του Michigan  δηλαδή η μέθοδος social engineering, δηλαδή πως θα κτίζουμε κράτη με βάση τη ηθική φιλοσοφία. Το προσπάθησε ο Πλάτωνας στη  «Πολιτεία» και ο Μαρξ αλλά απέτυχαν αλλά δεν είχαν τα μαθηματικά εργαλεία που χρειάζεται για αυτή τη προσπάθεια.  Ένα είναι σίγουρο ότι το Game Theory έχει δείξει το δρόμο ΤΟ ΟΤΙ ΛΕΜΕ ΣΕ ΚΟΙΝΗ ΓΛΩΣΣΑ ΠΡΕΠΕΙ ΝΑ ΑΠΟΔΕΙΚΝΥΕΤΑΙ  το τι έγραψε ο Πλάτωνας η ο Αριστοτέλης στην εποχή μας πρέπει να ΑΠΟΔΕΙΚΝΥΕΤΑΙ. Τα καινούργια εργαλεία είναι το Game theory.

O BINMORE (MICHIGAN) λέει ότι δεν ωφελεί σε τίποτα να αναθεωρούμε συντάγματα αλλά χρειάζεται να βρούμε ΜΕΤΑ-ΣΥΝΤΑΓΜΑΤΙΚΟΥΣ μηχανισμούς. Το ΜΕΤΑ εδώ έχει την έννοια του ΜΕΤΑ στη λέξη Μεταφυσική. Ποιοι είναι αυτοί οι ΜΕΤΑσυνταγματικοι μηχανισμοί? Η ύπαρξη  «υγιών ΑΓΟΡΩΝ» ο  Moulin (Duke)  λέει ότι η προσπάθεια του  Binmore είναι πολύ φιλόδοξη αλλά ΑΠΟΤΥΧΗΜΕΝΗ .Το Nash Program είναι η προσπάθεια να μετατρέψουμε όλα τα συνεργάσιμα παιγνίδια σε μη-συνεργάσιμα. Το ότι ο θεός έκανε το παράδεισο με τον Αδάμ και την Εύα δεν ήταν τυχαίο. Ένα επιτύχουμε το Nash Program τότε θα είμαστε κοντά  στο να βρούμε λύσεις στα προβλήματα της ηθικής φιλοσοφίας λέει ο Binmore.

Άλλες θεωρίες  θα ξεχωρίσουμε  το Evolution of Cooperation του Axerlod (Michigan)  το best seller  στις πολιτικές επιστήμες. Τις  «άλυτες» θεωρίες του  Von Wright (Helsinki) Intrapersonal and interpersonal utility. Το σχεδίασμα  μηχανισμών του  Myerson (Northwestern) και οπωσδήποτε την «ΕΒΡΑΪΚΗ ΣΧΟΛΗ»   Hebrew University  με τους Aumann, Hart, Maschler, Peleg  και το βιολόγο Maynard Smith  (Dudee) Ενδιαφέρον θα είναι πως θα χρησιμοποιήσουμε τις θεωρίες του  Savage (Michigan)   υποκειμενικές πιθανότητες  στη θεωρία του social engineering

 

Π. Βασιλειάδης

Peter M Vasiliadis

A Michigan man

P.S. Οικονομολόγος είναι αυτός που έχει εκδώσει στις Econometrica, Journal of Economic Theory or Journal of Mathematical Economics

Editorial

BARISTA PRO

Επισκεφθείτε τον ιστότοπο:

www.baristapro.com.gr

“Από τη διαφορετικότητα των γευστικών

επιθυμιών του καταναλωτικού κοινού”.

Από εκεί ξεκίνησαν όλα…

Η Barista Pro είναι μια εταιρεία

που προμηθεύει  επιχειρήσεις

καφεστίασης με καινοτόμα προϊόντα,

τα οποία ξεχωρίζουν για την

ποικιλία και την  εγγυημένη

ποιότητά τους!

H πληθώρα των προϊόντων μας

περιλαμβάνει  καλοκαιρινά

και χειμερινά ροφήματα

για απαιτητικούς καταναλωτές,

Διαφήμιση